How do I use the API?
Overview
The Aiceberg API provides a streamlined interface for real-time AI content analysis and risk detection. This single-endpoint API allows you to submit prompts and receive analysis results in one call, making it ideal for integration and testing.
Base URLs
Get base URL from customer success team during onboarding.
Authentication
All API requests require authentication using an API key in the Authorization header:
Authorization: YOUR_API_KEYEvent Analysis Endpoint
POST /eap/v1/eventDescription
Submit a prompt for real-time analysis and receive comprehensive risk assessment results. This endpoint processes your input through Aiceberg's Detection and Response platform and returns signal analysis, token counts, and system actions.
Headers
Content-Type
application/json
Yes
Authorization
YOUR_API_KEY
Recommended
Request Body
Example request body:
{
"profile_id": "string",
"profile_version": 0,
"input": "string",
"output": "string",
"instructions": "string",
"event_type": "user_llm",
"log_group": "monitoring",
"event_id": "string",
"session_id": "string",
"forward_to_llm": true,
"background": false,
"metadata": {
"additionalProp1": {}
}
}Parameters
profile_id
string
Yes
The unique identifier for your Aiceberg profile configuration
profile_version
number
No
Version of the profile configuration to use (defaults to latest)
input
string
Yes
The prompt or content to be analyzed
instructions
string
No
Additional instructions for the LLM or analysis process
event_type
string
No
Type of event (default: "user_llm")
log_group
string
No
Logging category ("monitoring", "sandbox")
event_id
string
No
Custom event identifier for tracking
session_id
string
No
Session identifier for grouping related events
forward_to_llm
boolean
No
Whether to forward the request to the configured LLM (default: true)
background
boolean
No
Process in background mode (default: false)
metadata
object
No
Additional metadata for the event
Response
Success Response (200 OK)
{
"event_id": "string",
"event_type": "string",
"status": "string",
"created_at": 1752267389.178874,
"finished_at": null,
"input": "string",
"output": "string",
"session_id": "string",
"profile_id": "string",
"profile_version": 2,
"user_id": "string",
"log_group": "string",
"input_signal_result": "string",
"output_signal_result": "string",
"event_result": "string",
"input_system_actions": ["log"],
"output_system_actions": ["log"],
"input_token_count": 5,
"output_token_count": 7
}Response Fields
event_id
string
Unique identifier for this analysis event
event_type
string
Type of event ("user_llm")
status
string
Processing status ("finished", "processing", "failed")
created_at
number
Unix timestamp when the event was created
finished_at
number|null
Unix timestamp when processing completed
input
string
The original input prompt
output
string
Generated response if processed, or block message if rejected
session_id
string
Session identifier for tracking related events
profile_id
string
Profile used for analysis
profile_version
number
Version of the profile configuration
user_id
string
User identifier
log_group
string
Logging category ("monitoring", "sandbox")
input_signal_result
string
Overall risk assessment for input
output_signal_result
string|null
Overall risk assessment for output (null if no LLM response generated)
event_result
string
Final event classification
input_system_actions
array
Actions taken on input (e.g., "log", "modify", "block", "alert")
output_system_actions
array
Actions taken on output (e.g., "log", "alert")
input_token_count
number
Number of tokens in the input
output_token_count
number
Number of tokens in the output (0 if blocked)
Error Responses
New or refreshed API keys may take up to 15 minutes to become active. If you receive authentication errors immediately after creation, please wait a few minutes and try again.
Best Practices
Error Handling: Always check the status field and handle potential errors gracefully.
Event Classification: Use the event_result field to determine appropriate handling:
passed: Process output normally
flagged: Process with additional monitoring
blocked: Handle as policy violation with explanation
Signal Monitoring: Monitor both input_signal_result and output_signal_result for comprehensive risk assessment.
Token Tracking: Use token counts for usage monitoring and billing.
Audit Trail: Store event_id for correlation with Aiceberg's audit logs.
Profile Management: Ensure your profile_id is valid and properly configured for your use case.
Session Management: Use consistent session_id values to group related interactions.
Metadata Usage: Leverage the metadata field to store additional context for analysis and debugging.
Support
For API support, questions, or sample scripts email [email protected]
Last updated 1 hour ago
Privacy
This site uses cookies to deliver its service and to analyze traffic. By browsing this site, you accept the privacy policy.
Last updated